

SYNTHESIS OF AN INDOLIZIDINEDIONE OXIME INHIBITOR OF ACETYL-COENZYME A CARBOXYLASE (ACCase)

Erik N. K. Cressman

Discovery Research, DowElanco

9330 Zionsville Road, Indianapolis, IN 46268

Abstract: The synthesis and enzyme inhibitory activity of a novel hybrid compound which incorporates substructures of two classes of inhibitors of ACCase are described.

There are several classes of herbicidal inhibitors of Acetyl-Coenzyme A Carboxylase (ACCase, E. C. 6.4.1.2), the enzyme responsible for the first committed step in fatty acid biosynthesis. The cyclohexanedione class, illustrated by tralkoxydim (1), has been known for some time.¹ The indolizidinediones 2 have emerged² as the newest class of compounds shown to inhibit the reaction (Figure 1). Due to their recent disclosure, we focused on the indolizidinediones and sought to combine structures 1 and 2. Using this hybridization approach, we hoped for novel ACCase inhibitors which were more potent than any of the known classes of herbicides which inhibit ACCase. Our target thus was structure 3, in which the indolizidinedione "tail" has been conceptually welded to the oxime "head" of a cyclohexanedione.

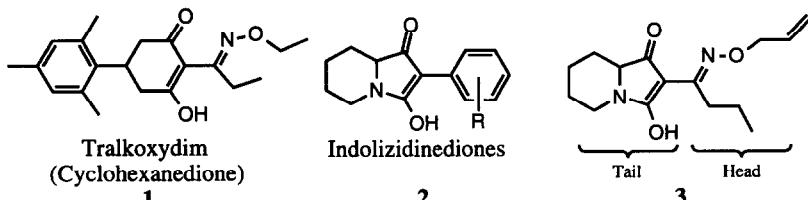
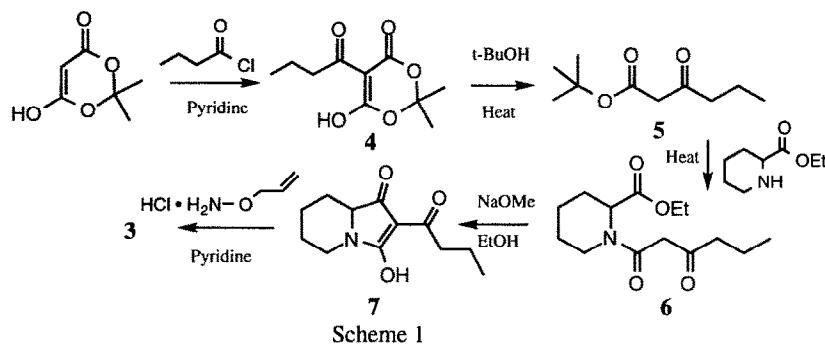



Figure 1

The synthesis of this material is outlined in Scheme 1, beginning with condensation of Meldrum's acid and butyryl chloride to give the trione 4.³ Pyrolysis of 4 to generate the acyl ketene in the presence of *tert*-butyl alcohol gave the β -keto ester 5 (49% over both steps).⁴ A second pyrolysis, this time in the presence of ethyl pipecolinate, gave β -keto amide 6 (78%). Use of the *tert*-butyl ester 5 gave a much cleaner reaction than using trione 4 directly. Cyclization was accomplished by treatment of 6 with sodium

methoxide in ethanol to give **7** (68%), which when treated with O-allylhydroxylamine hydrochloride and pyridine gave the desired target **3** (69%).⁵

Compound **3** had an I_{50} of 80 μM when assayed for ACCase inhibition. By comparison, the indolizinedione lead **2** ($\text{R}=2,4$ -dichloro) showed an I_{50} value of 15 μM in the same assay and the I_{50} for tralkoxydim (**1**) is 1 μM . Although we succeeded in generating a novel structure which inhibits the reaction, combining the two areas of chemistry did not result in a more potent inhibitor. Thus, despite the similarity of the 1,3-dione moieties contained within the two classes of chemistry, the data suggest that they do not bind at the enzyme in the same manner.

Acknowledgements: Discussions with Drs. J. A. Turner, M. H. Hopkins, and C. Cséke were greatly appreciated. The author would like to thank Dr. C. Cséke for providing enzyme assay data.

REFERENCES AND NOTES

1. a) Rendina, A. R.; Felts, J. M. *Plant Physiol.* **1988**, *86*, 983. b) Secor, J.; Cséke, C. *Plant Physiol.* **1988**, *86*, 10.
2. Babczynski, P.; Fischer, R. *Pestic. Sci.* **1991**, *33*, 455.
3. Yonemitsu, O.; Oikawa, Y.; Sugano, K. *J. Org. Chem.* **1978**, *43*, 2087.
4. Witzemann, J. S.; Nottingham, W. D. *J. Org. Chem.* **1991**, *56*, 1713.
5. All new compounds gave satisfactory microanalyses, ^1H NMR, ^{13}C NMR, and IR spectra.

(Received in USA 22 June 1994; accepted 5 July 1994)